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ABSTRACT

—

“Individuals are observed until either they withdraw or die. The data
are then grouped into intervals and from the grouped data it is desired
to estimate the death—rate for the intervals. The present paper con-
siders only a single interval. A method is suggested which gives
interesting estimates with standard errors that do not tend to zero
as the sample size tends to infinity.
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ANALYSIS OF LIFE TABLES WITH GROUPING AND WITHDRAWALS

by

Dennis V. Lindley

We use the model of Breslow and Crowley (1974). Associated with

each individual is a pair of independent random quantities , X , the

lifetime and Y , the withdrawal time. The raw observations for an

individual are z = win (X,Y) , the time at which he leaves either

through death or withdrawal, and an indicator which says whether the

departure was caused by death or withdrawal. The time scale is then

divided into nonoverlapping intervals and the quantity Z grouped so

that observation is only made on the interval within which he left the

system. The quantities for different individuals are independent and

identically distributed . Consequently if N individuals are present at

the beginning of an interval, the data consists of D , the number who

were observed to die in the interval; W the number observed to withdraw

alive during the interval; and S the number who survived to enter the

next interval. N = D + W + S . In this paper we shall, only consider a

single interval, except for a remark in the discussion at the end of the

paper. Our task is to estimate the chance of death occurring in the

interval. If X and Y have distribution functions F and H respective-

ly and the interval is (0,1] conventionally, then this chance is F(l)

The novelty lies in the fact that the probability of being observed to die

is necessarily less than F(l) , since some deaths during the interval will

take place after withdrawal and therefore be unobserved. This happens

whenever Y < X < 1 - The unknown quantity of interest is F(l) the

data are D , W and S , so that we require to calculate p(F(1) j D,W,S)



2

Another possible interpretation of the model is to replace “death” by

“death from a specific cause,” say cancer; and “withdrawal” by

“death from other causes.” In that situation we have a competing risk

problem and both death—rates, F(l) and H( 1) , will be of Interest.

ce shall therefore concentrate on the calculation of p(F(l),H(l) D,W,S)

from which the earlier quantity can be obtained by taking the marginal

distrubution. Notice that this competing—risk model assumes the two

risks, expressed through X and Y , are independent. The model has

applications to life—tables in biology and in reliability engineering.

The model Is specified in terms of F(x) and H(x) for 0 < x < 1

with F(O) = H(O) = 0 , so that it is natural to extend the conversation

from the quantities of interest, F(l) and H(l) , to include these

functions. We therefore begin by calculating the likelihood of F(x)

H(x) , 0 < x < 1 for the data (D,W,S) . An individual will be observed

to die in the interval if he dies at any time x , O < x < l  , and his

withdrawal quantity Y exceeds x - Hence

p(observed death) =f  (1 - 

~~~~~~~~~~~~
F(l) — JH(x)dF(x)

demonstrating that the true death rate exceeds the chance of observed

death by a nonnegative integral. Similarly
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p(observed withdrawal) =f ~i — F(xfldH(x)

0

(2) 
1

a H(l) _fF(x)dH(x) -

To survive he must neither die nor withdraw, hence

(3) p(survival) = [1 — F ( l ) ]( l  — 11(1) ] -

It is easy to verify that these probabilities add to one. (This provides

an unusual proof of the usual formula for integration by parts !)

To economize on notation we write 1(1) 4i , H(l) = B and define

(4) p fF ( x ) d H ( x )/ F ( l ) H ( l )  -

A probabilistic interpretation of p is that it is the conditional

probability of death, given that both X and Y are less than one :

that is, given that both withdrawal and death take place in the interval.

It Is an artifice of the model, rather than a physically interpretable

quantity. Similarly (1 — p) is the probability of withdrawal under

the same conditions . Then

p(observed death) = 4{1 — (1 — p ) B }

(5) p(observed withdrawal) = 0(1 — p
~) , and

p(survival) (1 — $)(l — 0)

The likelihood for the data is consequently
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(6) 1~D(1 — ~4,)
W(1 — •)

S{1 — (1— ~)0}D8W (1 —

Within the restrictions of the model this expression contains all the

information in the data and several important remarks can be made about

it. First , although the conversation was extended from F(l) and H(l)

to include these functions throughout the whole of the interval, in

fact the only additional quantity thereby introduced is p - Consequently

the data only contains information on three aspects of F and H

namely 4, , 0 and p . The value of p will be considered below.

Second , the trinomial likelihood (6) depends on these three parameters

4, , B and p , each of which, irrespective of the values of the others,

can assume any value in the unit interval. Consequently in the unit

cube of (4,,0,p)—values , there is a one—dimensional curve on which, as

4, , 0 and p vary, the probabilities (5) remain unaltered , and we have

a problem that econometricians describe as unidentified : that is, even

if the probabilities on the left—hand sides of (5) were known exactly

(N ÷ m) the values of 0 , 4, and p would not be known but only known

to lie on the curve just mentioned . Third , if p were known , then the

likelihood (6), now dependent only on 0 and 4, , factors into a product

of two terms which depend on 0 alone au~.L 4, alone. Consequently

estimation of each can proceed separately if B and 4, are judged

independent. In particular , as some writers suppose, if the withdrawal

times are deterministic then only the 4,—part is relevant. But with p

unknown , the situation is wore complicated and there is no obvious reason

for discarding the 0—component , when intersected in 4, , since it

appears to contain information about p which may be of value in inter-

preting the 4,-component. Hence p , which arises from the grouping,

plays a key role in the analysis, and we now discuss it.

A
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Since F and H are both increasing, 0 < p < 1 . Both extremes

are attainable: for if all withdrawals take place at the beginning (end)

of the interval, but no deaths occur there, then p 0(1) . If linear

splines are used to approximate F and H , so that t-}’ey are both linear

in (0,1] , then simple calculation shows p ½ - More generally ,

if F(x) a cH(x) , then p = ½ , for any c : in particular if c 1

and they are identical . If deaths and withdrawals take place at constant

rates , A and ~i respectively,  during the interval, so that F( x ) = 1 — ~~~~

and H(x) 1 — e~~
’
~ , then simple calculation shows that

(7) p = 
A — (A + ~)e~~ + Ue

+
~~ 

-

(A + M ) ( ’  - e X ) ( l  - eTh

Expanding both numerator and denominator in powers of A and ~i up to and

including third powers shows that p ½ for all A and ~ - Hence

unless the death— and withdrawal—rates are high, p = ½ is a good approxi-’.

matior.. Other assumptions are possible: for example, Chiang (1961) supposes

that all withdrawals take place at the mid—point of the interval and that

the deaths occur at a constant rate. Then p = F(½)/F(l) = Cl — (1 — 4,)½}4, 1

These considerations, allied to the unidentifiability aspect, mean

that two types of procedure are possible. First, assume enough about F

and H for p either to be known or to be known as a function of 4, and

O . (Thus linearity gives p a ½ : Chiang ’s procedure is an example of

the second possibility.) Second , leave F and H sufficiently general

for p to be unknown, even as functions of 4, and 0 , and to face up to

the identifiability problem. Previous work on the problem has concentrated

on the first procedure, waking assumptions about F and G - However

Breslow and Crowley (1974) show that if this is done then the resulting
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estimators of 4, and 0 are typically inconsistent , in the sense

that as the size of the data base increases , N + , they do not tend

to the true death— and withdrawal—rates. For example , the classical

estimate , D/(N — ½W) is only consistent under rather special assumptions

about F and H . In this paper we therefore take the second view,

that p is not known, even as a function of 4, and 0 . We show that

estimation is still possible and that the possible inconsistency is

avoided .

We therefore return to the likelihood , given by (6), in which 4, , 0

and p can take all values in the unit cube. Since p is unknown it

has a distribution , which we suppose independent of 4, and 0 . Let its

density be f(p) . (These assumptions will be discussed below when we are

in a better position to appreciate the roles they play.) Consequently ,

from (6)

(8) p(D,W,S 0,4,) a ~D<1 - 4,)
S0W (1 - 0) S 

f(1 
- pØ )W{1 - (1 - p)e}Df(p)dp

Even with simple forms for f(p) , for example Beta, the integral cannot

be evaluated in terms of standard functions. There are two possible

procedures : for numerical values of D , S and W to use numerical

integration techniques; for large N to use analytic approximations .

In the present paper we explore the latter possibility . ‘i’his will give

us the “feel” of the situation more easily than the computational method ,

Lhough that method will be essential for small samples.

If N , and consequen tly D and W , are large , the integrand

in (8), as a function of p , has a maximum where

_ _ _ _ _ _ _ _ _ _ _ _ _  J
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1 — (1 — p)0 1 — p~4,
DO W4,

or

d w( l — 0)
0 = n , say

where d = D/(D + w) and w = W/ (D + W) ; d + w = 1 . (The interpretation

of d is the proportion of those seen to die out of all who left the

system in the interval.) This value of p , that has been written

= ~(4,,0) , is the maximum likelihood value of p for given 4, and 0

There are two possibilities : if n lies outside the range of

integration in (8), namely the unit incerva~~ then the integrand will be

small; if 0 < < 1 then the integrand will be appreciable only in

the neighborhood of the maximum. We shall therefore suppose the likelihood

vanishes outsIde 0 < n < 1

We next use the result that if 0 < n < 1

(10) fe~~~~~f(P)dP — ~~~~~~~~~~~~~~~~~~~

asymptotically as N . (The double prime denotes a second derivative.)

This is easily established by a steepest—descent type of argument.

On applying this to (8) with

NL(p) W log ( 1 —  p4i ) + D log {l — ( 1 —  p ) e }

and simplifying the result, we have for p (D,W,S 0,4,)

(1 - 4 ,) S (1 - 0) S [1 (1 - 0)(l - 4 , ) ]N_ S+l
f ( )0

_l
4,
_l

j
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A change of variables from 4, and 0 to ~ = (1 — 0)(l — 4,) and ri

gives

(11) p ( D ,W , S ~~~ 
= ~S~ 1 - ~) N_ S

f ( f l )  . (1 -

It may help in the appreciation of what is happening to consider

p(D ,W ,S ~,n )  in the plane of 4, and 0 (see the f i g u r e ) .  It is

zero (or strictly, very small) except between the two curves rj = 0 and

= 1 drawn in the figure. Between these two curves the function is

o.Lly large in the neighborhood of the curve ç = S/N , also drawn in

the figure. Consequently we need only concern ourselves with this

probability in a region indicated by hatching in the figure. Within this

region and along curves ~ = constant , the probability is dominateu by

f (~) where f is the prior density for p . Furthermore if the final

term in (11), (1 — 
~)/04, , which comes from the second derivative in (10),

is ignored , the probability (or more correctly,  likelihood) factors into

functions of ~ and q separately. The curve ~ = S/N intersects the

two curves n = 0 and r~ = 1 at A and B in the figure, whose

4,—coordinates are respectively D/N and D/(N — W) . Hence with probability

almost one, 4, lies between these two values which corresponds to assuming

that all withdrawals take place at the end (beginning) of the interval.

A co~unon estimate is to adopt the compromise D/(N — ½W) . Most of these

results can be deduced by equating the chances in (5) to D/N , W/N and

S/N respectively. The additional feature that our analysis shows is the

factorization of the likelihood when expressed in terms of ~ and n

and the explicit form of the factors , in particular that in n , which is

ent i re ly  due to the prior opinions about p , f ( s )
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FIGURE 1
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If , over the hatched region, the prior density for 4, and 0 is

reasonably constant then the expression on the right—hand side of (11)

is approximately proportional to the probability of ~ and n , given

D , W and S . If the contribution from the second derivative is

ignored , we have approximately

(12) ~~~~~ D ,W , S) ~S (1 - C)
N_ S

f ( n )

so that ~ and ~ are independent , ~ having a Beta—distribution

and n having the density of p . Admittedly rather crude approximations

have been made in order to obtain this result , but experience with steepest—

descent type arguments in this sort of situation suggests that they will

work reasonably well and not demand excessi.”ely large data sets (large

values of N). They are about as good as maximum likelihood results are.

The posterior mode of (12) occurs at ç = s and ii = r , where

s = SIN , the proportion who survive the interval, and r is the most

probable a priori value of p . Translating this back into values of

4, and 0 , the modes satisfy

(l _ 4,)(l _ 8 )= s  and

(13)
d w( 1 — 0 )  

—

4, 0 — r .

Solving for 4, , the chance of death in the interval, we easily obtain

the quadratic equation

(14) 4,
2r - 4,{(d + r) + s(w - r )}  + d(l - s) a 0

In terms of the raw data D , W and N , this is
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(15) 4,
2 rN - 4,{N - W + r (D + w)} + D = 0

It was remarked in the third comment after (6) that if p is known

the 4 ,—part  of the likelihood is

- p4,)
W (1 -

It is easy to verify that the maximum of this likelihood satisfies (15)

with p = r . In other words, our posterior mode for 4, is the maximum

of the 4,—part of the likelihood with p replaced by its most likely

value, r . The left—hand side of (14) equals d(l — s) > 0 at 4, = 0

and equals —s(l — r) < 0 at 4, = 1 , so that there exists just one

root in the unit interval. At the value of 4, given by

6” D(1,  4,1 N -  (l - r)W

the left—hand side of (15) is easily calculated to be r(l  — r )D 2W/N 3

which is small. Hence in many cases is a reasonable estimate of

the death—rate. It can be justified on intuitive grounds by supposing

that all withdrawals take place at r , so that each withdrawal is only

exposed to the risk of “observed” death for time r . If this happens

then p a r . A usual assumption is that r ½ , which we have seen

is a reasonable value of p . It is perhaps worth noting that at

the quadratic is positive so that is always less than the posterior

mode, hence there may be a systematic error in using 4,
~ 

in under-

estimating the death—rate.

4
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Further progress may be made by returning to the densi ty  of ç and

Ti , Equation (12), and considering the second moments. Clearly ~ has

approximate variance s(1 — s)/N , Ti has variance v , say, the prior

variance of p , and they are uncorrelated . From these second moments

of ~ and r~ we can pass to the approximate second moment of 4,

using the delta—method . The expression for 4, in terms of ~ and Ti

is (Equation (14) with r for s , and n for r)

- 4 ,C d + n + ~ (w - n) )  + d(l - c) = 0

Hence

24,r~~4, + 4,
2
~ ri - Cd + n + ~(w -

— 4,(t~Ti + (w — 

~~~ 
— 

~~ Ti]  — dt~ç a 0

and

- 
Cd + 4 , (w - T i ) }~~~ + {4 ,(l - )~ -4, - 24 ,n - Cd + ~ + ç(w -

Consequently

(17) var (4 , d ,s,N) Cd + 6(w - r)} 2s(l - s) / N  + ~
2 (l - s -{24,r — d — r — s(w — r )}

where $ is the solution of (14). (Note: d + w 1 .) The form of

this variance is particularly interesting. It consists of two parts,

derived respectively from the variances of ~ and n , the first of

which tends to zero as N - , but the second of which does not

(unless the proportion of deaths or withdrawals observed tends to zero).

I
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The latter part is a multiple of v , the prior variance of p

Consequently, however large N is , ther e remains some unce r tain ty

as to the true death—rate , ascribable to the original uncertainty about

p . The estimator given by (14) is therefore not inconsistent as suggested

by Breslow and Crowley . Neither is it consistent. There is just not

enough information in the data , however much of it there is, to be sure

about the death—rate. The original uncertainty about p is present

however large is the data set.

It is of some interest to see the effect of the prior variance of

p , v , on the very large sample variance of 4, . Letting N -“ a in

(17), approximating $ by 4, , r by p and using the facts that D/N

and SIN tend to the chances given in (5), tedious algebra establishes

that the variance of 4, tends to

4,(1 - $)0 2

(1 — 0) + p ( 0  — 41) ~

For example, if 4, = 0 so that the withdrawal— and death—rates are

equal, this is 4,
2v , or the standard deviation is scaled down from

for p to ~v
½ for 4, . If, as we suggest below, v is small,

the residual uncertainty about 4, is even smaller, especially for

low death—rates.

S
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Discussion:

Many statisticians will object to our argument because it introduces

a prior distribution for p , and , less importantly, 4, and 8

We will discuss this in a moment, but first I would ask them to consider

the operational consequences of the method . Rather than committing

oneself to a rigid assumption about F and H , the method allows for

flexibility in these functions and does not involve a committment to

any particular form. The result of this is that instead of producing

estimators which are inconsistent unless the rigid assumption is exactly

true, information is provided about the uncertainty in the death—rate

and the role played in this uncertainty by the lack of knowledge of p

Our method therefore seems both flexible and realistic.

Here is no place to argue in favor of p having a distribution.

Essentially without it inconsistency of judgments cannot be avoided .

The choice of the exact form of f is not a subject that a statistician

should consider on his own: he must necessarily consult with the

demographer or reliability engineer who is familiar with the situation.

The statistician ’s task is to help the scientist to articulate his

knowledge of the problem in probabilistic terms. Here it may not be

unreasonable to assume p has a fairly tight distribution around p a ½

since, as we saw above, many familiar situ:’ions give values of p

either exactly ½ or very near to it; and p near 0 or 1 only

arises in extreme situations. But there is one case where p is near

3/4 , namely in calendar—year counts of academic staff , since most

withdrawals take place at the end of the academic year in September.

In our large—sample analytic treatment only the mode and variance of p

matter. With a uniform distribution of p , v = 1/12 , and values sub—

stantially less than this seem in order. 

~~~~~~ -—.—--- ~~~~~~~~~~~~~~~~~~~~~



We have wade the severe assumption that p is independent of

41 and 8 . The appropriateness of this must be a matter  for discussion

and cannot be decided on purely statistical grounds. It would not be

difficult to incorporate dependence into the argument but without a

specific application in mind it seems idle to speculate on the form

it might take. In some cases p might be a function of 8 and 41

as when F and H are both exponential (Equation (7) above), identif i—

ability is ensured and consistency obtainable though the likelihood

is rather comp licated .

We have considered only a single interval. For several intervals

it is easy to see the likelihood is the product of factors like

(6) with data 0k Wk ~k (Sk i  
a Dk + Wk + Sk) and parameters

Consequently the likelihood factors . However it seems

reasonable that the priors will not factor since the death—rates

for example , are likely to be similar in adjacent intervals. This

correlation will lead to smoothing of the rates as a function of k

but details r emain to be worked out.

I am grateful  to Professor Richard E. Barlow who invited me to

Berkeley , introduced me to l i fe—table problems and challenged me to

provide a Bayesian analysis. This paper is the reply to the challenge.

4
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